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Abstract

Purpose Monitoring and predicting the cognitive state of subjects with neurodegenerative disorders is crucial to provide
appropriate treatment as soon as possible. In this work, we present a machine learning approach using multimodal data (brain
MRI and clinical) from two early medical visits, to predict the longer-term cognitive decline of patients. Using transfer learning,
our model can be successfully transferred from one neurodegenerative disease (Alzheimer’s) to another (Parkinson’s).
Methods Our model is a Deep Neural Network with siamese sub-modules dedicated to extracting features from each
modality. We pre-train it with data from ADNI (Alzheimer’s disease), then transfer it on the smaller PPMI dataset (Parkinson’s
disease). We show that, even when we do not fine-tune the filters learnt from the ADNI MRIs, the transferred model’s results
are satisfying on PPML.

Results The first main result is that our model provides satisfying long-term predictions of cognitive decline from any pair
of early visits, with no fixed time delay between these visits (provided the potential decline has started at the second visit).
The second main result is that the prediction performance on Parkinson’s dataset (PPMI) reaches an AUC of 0.81 on PPMI
after transfer learning from Alzheimer’s dataset (ADNI), without even having to re-train the image filters, versus an AUC of
0.72 for the model trained from scratch on PPMI.

Conclusions First, our model is effective for predicting long-term cognitive decline from only two visits, even with irregular
intervals of time. When dealing with neurodegenerative diseases, where patients often miss some control visits, this is an
important finding. Second, our model is able to transfer the knowledge learnt from one neurodegenerative disease (Alzheimer’s)
to another (Parkinson’s), when using the same imaging modalities (brain MRI) and different clinical variables. This makes it
usable even for diseases that are rare or under-studied.

Keywords Multimodal learning - Transfer learning - Siamese deep neural network - Cognitive decline detection - Alzheimer’s
disease - Parkinson’s disease

Introduction

For the Alzheimer’s Disease Neuroimaging Initiative (see

“Acknowledgements”). There are some longitudinal studies where people at risk of
developing neurodegenerative diseases are monitored during
several years. These studies allow medical doctors and data
scientists to gather medical records information and medi-
cal imaging from different sources. However, the relatively
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small size of bio-medical cohorts can induce over-fitting
when using deep learning models, therefore hindering their
effectiveness and generalization capacity. Moreover, due to
technical hazards and patients’ life uncertainties, data col-
lection can be irregular an incomplete, especially in the case
of neurodegenerative diseases.

In this work, we first present a deep learning model able
to use multimodal medical data from two arbitrarily chosen,
early medical visits to predict longer-term cognitive decline
in patients with suspected Alzheimer’s disease. Then, once
this model is validated, we show that our model is adaptable,
in the sense that, once pre-trained for a given disease, its
knowledge can easily be transferred to another disease, even
in the presence of a smaller dataset.

In short, our model has the following characteristics:

1. It uses data from multiple modalities: medical images
(brain MRI), clinical data, and risk factors associated with
the pathology.

2. Instead of being based on projections of the structural
3D MRI onto some 2D plane (leading to a loss of infor-
mation), or on the (possibly noisy) extractions of some
Regions of Interest (ROI), it is able to process directly the
3D MRI images by learning 3D filters.

3. It takes as input two arbitrarily chosen medical visits, T;
and 7; + 6 (without strong constraints on the initial time 7;
nor the time interval § between the two, contrarily to our
previous model), and returns the predicted longer-term
class (“stable” or “declining’’). We observe very satisfying
results with a potential decline observed between the two
visits.

4. Itis adaptable, in the sense that it can be pre-trained for a
given neurodegenerative disease and then its knowledge
can be easily transferred to another neurodegenerative dis-
ease (using a target dataset with similar modality types,
but fewer patients and/or visits). As a proof of concept, we
use the case study of transfer learning from Alzheimer’s
disease to Parkinson’s disease, with the same imaging
modality (3D MRI) and similar risk factors, but different
clinical variables. We will show that, even if we do not
fine-tune the filters learnt on the images, it still gives very
good results on the transferred dataset. This shows that our
model could be easily re-used for a variety of neurode-
generative diseases which are too rare or under-studied to
have dedicated labelled bulky datasets.

The characteristics 1 and 2 above are coming from our
previous model [1], whereas points 3 and 4 are the main
contributions of the work presented here.
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Related works
Multimodal learning with bio-medical data

Several studies used multimodal data in the bio-medical
field, but only a few used both imaging and clinical data,
as most are focused on using images from different acqui-
sition methods such as PET and MRI. In our case, we deal
with both imaging and clinical data, i.e. data having specific
dimensions and characteristics for each modality. Among the
possible data fusion strategies [2], Xu et al. inspired us with
an intermediate-fusion-based neural network. The images go
through convolution layers, while the clinical data go through
fully-connected layers. Eventually, the two sub-networks are
fused into a fully-connected neural network for classification.

Bhagwat et al. [3] employed Siamese Networks to use data
(Region Of Interest (ROI) measures from MRI, and cogni-
tive scores) to predict cognitive decline from two medical
visits. Siamese neural networks are used to perform com-
parisons of pairs of data. They are made of two identical
branches (same layers and same parameters) which share
weights from initialization to the end of training and are
fed with paired inputs. Siamese networks have shown great
performance for different applications such as handwriting
recognition [4] or facial recognition [5]. Finally, Lee et al. [6]
used a multimodal recurrent neural network to detect subjects
converting to Alzheimer’s disease. Their approach is inter-
esting but lacks a joint learning part and, like Bhagwat’s,
relies on the computation of ROI-based metrics, which can
be imprecise and lead to detection errors.

In order to circumvent the shortcomings of the meth-
ods above, we have proposed the Multimodal3DSiameseNet
model [1] in 2020, which is able to detect the cognitive
decline of Alzheimer’s patients using multimodal data (clini-
cal data and 3D MRI). In [1], we showed that for Alzheimer’s
disease, our architecture, when using only two medical visits,
gives better predictions for cognitive decline than Recurrent
Neural Network models using either three or four successive
visits. However, our training protocol was based on the use
of two visits for each patient, with strong constraints on their
times (7 + 6 months or T + 12 months).

Transfer learning strategy

The transfer learning approach consists in using a model
already trained on a large quantity of data that presents sim-
ilarities to the data of interest. This model’s architecture and
its parameters are then used as a starting point for a second
training, with a smaller training set, for the final application.
The main appeal of this strategy is that it is supposed to help
the network converge quicker than using a random initializa-
tion [7]. We need to choose which layers (or sub-modules)
will be re-trained and which ones will have their parameters
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frozen (i.e. not updated during re-training). In the medical
imaging field, transfer learning can be done by using images
from a study on the same disease but from another popula-
tion or another imaging modality, or from a different disease
on the same organ. A recent example is the transfer from
lung images obtained with X-rays to scanner images for the
diagnosis of COVID-19 [8].

Parkinson dedicated studies

In this section, we focus on recent research about Parkinson’s
disease, which is a very active field. Focusing only on clinical
data, some large studies show the importance of long-term
cognitive trajectories on a large number of patients [9]. The
authors in [9] have focused on Mini-Mental State Exami-
nation with classical machine learning methods to extract
long-term predictions. Different studies [10,11] have used
specific tools to extract the cerebellar and subcortical features
from MRI, before applying some classical machine learning
algorithms to obtain multiple indicators to assist the clinical
diagnosis.

Other approaches used deep learning models [12] to
extract deep features from PET images to classify differ-
ent Parkinson’s disease states (early idiopathic Parkinson’s
disease and atypical parkinsonian syndromes). Chandaran
et al. [13] have proposed a recent review on transfer learn-
ing usage for different brain diseases using MRI. They show
great possibilities of transfer learning approaches, however,
they also mentioned that it is not always very accurate. Also
using a transfer learning approach, and concerning Parkin-
son’s disease, Basnin et al. [14] have proposed a model using
a pre-trained DenseNet architecture to extract deep features
from MRI and an LSTM model to discover temporal depen-
dencies. Their study is not multimodal and is focused only
on MRIL

Method

Multimodal deep learning model architecture:
multimodal3DSiameseNet

This work aims to propose an adaptable deep neural net-
work architecture designed to make long-term prognosis on
the evolution of neurological diseases in subjects, to iden-
tify those that are more at risk. In our previous work [1],
we proposed a model for detecting the cognitive decline of
Alzheimer’s patients based on two visits, consisting neces-
sarily of the baseline visit and either the 6-month or 12-month
follow-up visit.

In the present work, we re-use this model with slight
changes for new tasks:

e long-term (up to 72-month) prediction of the cognitive
decline of Alzheimer’s patients, from two early visits T;
and T; + 6 picked randomly (between O and 24 months)
among the available visits for each patient between the
baseline and 24 months, with no specific fixed times for
the two visits considered by the model, nor fixed time
interval between these two visits;

e transfer learning from one neurodegenerative disease
(Alzheimer’s) to another neurodegenerative disease
(Parkinson’s)

Figure 1 shows the general architecture of our model: Mul-
timodal3DSiameseNet. To use multimodal data, our model is
divided into three sub-modules, two of them being siamese
networks, and the third one is a fully connected network
for risk factors common to all patients. This allows us to
obtain different points of view on the disease’s evolution:
a morphological point of view with the medical images, a
cognitive point of view with the clinical tests, and comple-
mentary information coming from risk factors.

Compared to the model we introduced in [1], small
changes have been made in the 3D SiameseNet part (explained
in the next subsection). The training protocol has also been
modified so that the output classes are either “stable” or
“declining”, and correspond to a long-term prediction regard-
ing the progression of the disease (up to 72 months), inferred
from two medical visits picked randomly amongst the sub-
ject’s available visits. We shared our code on a specific
GitHub page.!

3D convolutional neural network for MR images

In the first version of this model [1], we used average pooling
layers after each convolution, but in the model we use in this
paper, pooling is replaced by convolutions with a 3x3x3
pixels kernel and a stride of two pixels in the three dimen-
sions to be able to optimize the dimension reduction during
training. Indeed, average pooling layers lose more informa-
tion than convolutional 3D layers with stride 2 as authors
mentioned in [15].

The two branches of this siamese neural network are then
combined by computing the absolute difference between the
output features of each branch. This allows us to extract
a high-level representation of the morphological changes
between any two pairs of visits at 7; and 7; + §. Then this
result is flattened to obtain a 1D vector that will be fused with
the features obtained from clinical data.

1 https://github.com/CeciliaOstertag/MultiNet.
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Fig.1 Updated version of our Multimodal3DSiameseNet model, derived from [1]

Feed forward networks for clinical data

Qualitative and quantitative clinical data are processed at the
same time as the medical images. Clinical scores from vis-
its 7; and T; + & will be fed to a second siamese network,
made of two feed-forward branches. These two branches are
combined using the absolute difference operation. The risk
factors (age at visit 7;, gender, and genomics) are processed
independently with a simple feed-forward network. These
two types of clinical information are then concatenated into
a single feature vector representing the clinical evolution of
the patient between the two visits.

Modality fusion

Finally, the features from the different modalities are merged
using an intermediate fusion strategy: first they are concate-
nated, then fed to a succession of fully connected layers.
These joint layers allow the network to leverage correlation
between the modalities.

Datasets
Datasets construction

Data used to pre-train the model come from the pub-
lic database Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [16].Itis based on a multicentric study on Alzheimer’s
disease development in the Elderly and is a good use case for
our model as the cohort is relatively large (800 subjects in
the original cohort ADNI-1), all subjects undergo a medi-
cal visit every 6 months for up to 72 months, and multiple
modalities of data are available (at least for up to 24 months
in the earlier version of the dataset): MRI, PET, genetics,
demographics, biological measures, and cognitive scores.
Subjects in this study receive a professional diagnosis at each

@ Springer

6-monthly visit: healthy (i.e. normal control (NC)), mild cog-
nitive impairment (MCI), or Alzheimer’s disease (AD). The
ADNI-1 cohort is composed of 200 NC, 400 MCI, and 200
AD subjects (based on the diagnosis at inclusion). These
diagnosis give us information about the health of the sub-
jects, but as they are punctual, they do not give insights into
the long-term evolution of the pathology.

The clinical variables available in the ADNI database are
demographic data (age, gender), genomics (APOE4 alleles),
and eight more clinical attributes (results of cognitive tests,
and biological measures). More details are given in “Training
the model with ADNI data” section.

In this study, we use all subjects from the ADNI-1 cohort
who had MR images taken at baseline, 6 months, 12 months,
and 24 months, obtaining 381 subjects in total. For each
subject, we form six pairs that correspond to the possible
combinations of two available visits: {baseline, 6 months},
{6 months, 12 months}, {12 months, 24 months}, {base-
line, 12 months}, {baseline, 24 months}, and {6 months, 24
months}.

For the transfer learning stage, we use data from the Parkin-
son’s Progression Markers Initiative (PPMI) database [17].
This database is a longitudinal study of 200 control patients
and 400 patients with Parkinson’s disease. They have a med-
ical visit at inclusion and after 12 months, 24 months, and
36 months. Similarly to the ADNI database, we consider
structural brain MRI as well as cognitive tests and informa-
tion about risk factors. As these modalities are similar as
ADNTI’s modalities, the PPMI dataset is a good candidate for
our transfer learning experiment from Alzheimer’s disease
to Parkinson’s disease. We only use the pairs {baseline, 12
months} for fine-tuning, giving us 134 pairs (47 stable sub-
jects and 87 declining subjects). The risk factors fed to the
model are the same as before, i.e. age, gender, and APOE4
genotype. We use eight of the available clinical scores for the
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Table 1 Distribution of the baseline diagnosis for subjects from our
training set into the classes Stable and Declining. the first line is the
patient status classes: Control (NC), Mild Cognitive Impairment (MCI),
and Dementia (AD)

NC MCI AD
Stable 137 62 2
Declining 0 76 104

clinical part of the model (see the “Training the model with
ADNI data” section for more details).

Ground truth labelling

In our ground-truth, we want to have labels that reflect the
long-term cognitive evolution of each patient. But, there is
no such information per se in the ADNI dataset. Therefore,
we had to create a specific ground truth. For that purpose, we
use the same method as Bhagwat et al. [3] to create clusters
of subjects based on the long-term evolution of the cogni-
tive score Mini Mental State Evaluation (MMSE) over a
72-months time span. This score is widely used for the assess-
ment of Alzheimer’s disease progression, which makes it a
good marker for cognitive decline, and varies between 30
(best score, healthy patient) and 0. This clustering reveals
two groups: a “Stable” group in which the MMSE results
stay high over time, and a “Declining” group in which the
MMSE results drop over time [3].

Using these results, every subject is assigned to either the
Stable or Declining cluster. These clusters are linked to the
diagnosis given with the ADNI dataset but do not bear the
same information, as shown in Table 1. Indeed, while all nor-
mal control (NC) patients are stable and most Alzheimer’s
disease (AD) are unsurprisingly classified as experiencing
a long-term decline, 45% of the mild cognitive impairment
(MCI) population is clustered as Stable, and 55% as Declin-
ing.

Finally, we obtain after preprocessing and labeling a
total of 2268 pairs of visits, divided into 1197 Stable pairs
(=negative pairs), and 1071 Declining pairs (= positive pairs).
Itis important to note that, because we chose the MMSE score
to be our reference for ground truth assignment, this score
will not be a part of the clinical data that we will feed to our
model.

For the PPMI data, we similarly created a long-term
ground truth to the ADNI data, using the Unified Parkin-
son Disease Rating Scale (UPDRS) score for the cluster-
ing, as a disease progression score (similar to MMSE for
Alzheimer’s). The subjects were grouped according to their
cognitive decline or stability over a 36 months time span.
Similarly to the ADNI subjects, we have a group of stable
subjects and a group of declining subjects whose UPDRS

scores increase with time. Similarly to ADNI, we exclude
the UPDRS score from the input data.

MRI and clinical variables pre-processing and augmentation

To remove unnecessary information in the images from both
ADNI and PPMI data, the brain MR images have been pre-
processed with alignment and skull-stripping as in [18], then
cropped to remove most of the background. Finally, because
the subjects’ brains have different sizes, we re-sized all of
the cropped images to 204 x216x 150 pixels then downsized
them to 102x 108 x75 pixels.

Let us now focus on attribute selection. For ADNI clinical
data, we start by removing the variables with a large number
of missing values (mostly bio-markers). Fortunately, as we
showed in [1], using MRI in our model partly compensates
for these missing clinical values. Then, based on pairwise
Spearman correlations between variables, we select one vari-
able for each group of highly correlated variables (excluding
the MMSE scores). In total, we select the three risk factors
AGE, GENDER, and APOE4 alleles, and eight cognitive
scores: LDELTOTAL, RAVLT learning, RAVLT immediate,
CDRSB, FAQ, TRABSCOR, RAVLT forgetting, and DIG-
ITSCOR.

For PPMI data, using a similar procedure, we select the same
risk factors, and eight of the 13 available clinical scores,
namely HY, NHY, UPSIT, HVLT, LNS, QUIP, SCOPA,
STAI. The score UPDRS, available in PPMI data, is the
disease progression score used that we use for creating our
ground-truth (so we do not use it as an input clinical variable).
As it is commonly the case, to improve training and reduce
risks of overfitting, we use on-the-fly image augmentation
during training, to introduce variability in the brain images.
To do this, we randomly apply a mix of Gaussian blur, rota-
tions, flips, and contrast modifications.

Experiments and results
Training the model with ADNI data

For pre-training with the ADNI dataset, data is split at the
subject level: we take 60% for training (229 subjects), 20%
for validation (76 subjects), and 20% for testing (76 subjects).
For each subject, 4 visits are most often available, produc-
ing 6 possible pairs of visits for each. The total number of
pairs for the test set is 456 but, as it misses some Visits, we
only have 450 pairs of visits in our test dataset. To avoid bias
during the evaluation of the model, all the visit pairs from
a single subject belong to only one subset of data (training,
validation, or test). We trained our multimodal model with a
four-fold stratified cross-validation protocol between train-

@ Springer



International Journal of Computer Assisted Radiology and Surgery

11

% of pairs
°
@
g

32 187
I I }
B~
. MCI
W ~
FN ™
Fig. 2 Distribution of Control (NC), Mild Cognitive Impairment
(MCI), and Dementia (AD) diagnosis among the True Positives (TP),
the True Negatives (TN), the False Positives (FP) and the False Nega-
tives (FN). Values on top of each column are the average counts over
the 4 cross-validated models: for instance, on average over the 4 models
(450 visit pairs in the test dataset), 187 visit pairs lead to a True Posi-
tive prediction (“Declining” prediction, in the presence of a decline in
the ground-truth). In blue in the fourth column, we can see that more
than 75% of them were diagnosed as having dementia (AD) during the
second visit we used as input

™ FP

ing and validation sets. The test set (76 patients) is identical
for all folds.

Results and influence of short-term variations

After training the models, we obtained a mean accuracy of
0.91 on our ADNI test dataset, with a standard deviation of
0.01, and amean F1 score of 0.90 with a standard deviation of
0.01 over our four models (one per cross-validation fold). The
histograms in Fig. 2 show the distribution AD, MCI, and NC
diagnosis, at the time of the second visit for each pair, among
the True Positives (patients correctly predicted by our model
as declining), the True Negatives (patients correctly predicted
as stable), the False Positives and the False Negatives.

As expected, the NC and AD subjects are mostly correctly
classified into the Stable and Declining classes. This confirms
that both subjects with no pathological signs (Alzheimer’s
disease or other) and severely affected subjects are effectively
detected by our model as (respectively) Stable and Declin-
ing. But, on average on the 4 folds, more than 28 patients
with Mild Cognitive Impairment (MCI) are misclassified (8
as False Positives, and 20 as False Negatives). Since MCI
subjects form a heterogeneous group (MCI subjects can be
either stable or declining, as shown in Table 1), we need to
look more closely at their MMSE scores to interpret these
classification errors.

Most of these errors probably come from the fact that
we train and make inferences with our model only using
the evolution of the patients from 2 visits (randomly chosen
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Fig. 3 Top: Distribution of the last available MMSE values (used for
creating the ground-truth, up to 72 months depending on the patient)
among TN, FP, FN, and TP. Bottom: Distribution of the second visit’s
MMSE (for pairs of visits used by the model, corresponding to intervals
between 6 and 24 months). The white color corresponds to a MMSE of
26, which is the threshold for Alzheimer’s disease [19]. Values are the
average counts over the 4 cross-validation folds

between the baseline and 24 months), whereas we created
our ground-truth using the long-term evolution of the MMSE
score (over a 72-month time span).

So, in Fig.3, we compare, for each patient, the MMSE
value from the latest visit of each pair used by our model for
prediction with the MMSE used to create the ground-truth
(last MMSE value available for each subject, up to 72 months
after inclusion).

From this figure, we can see that, obviously, these two
MMSE scores are mostly high for TN patients and low for
TP patients.

This figure also shows that a majority of false negatives
seem to correspond to pairs where the MMSE value is low at
the end of the study (used for ground-truth), but still high at
the second visit that we used for prediction. We can interpret
this as being subjects who developed Alzheimer’s disease
after the second visit fed to our model. This means that,
although our model has a good overall performance to pre-
dict long-term evolution of subjects (F1 score of 0.90), it
is inherently limited to detecting the cognitive decline only
when it is perceptible in the short-term time frame used for
the study. In particular, for subjects who started to decline
after the second visit used for inference, our model cannot
accurately predict their decline.
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Table 2 Variation of precision,

. 6 months 12 months 18 months 24 months
recall and F1 score according to
the time interval & between the Precision 0.97 (£ 0.03) 0.95 (4 0.04) 0.93 (& 0.05) 0.94 (& 0.06)
two visits fed to our model
Recall 0.83(£ 0.05) 0.84 (+ 0.02) 0.91 (+ 0.02) 0.89 (4 0.02)
F1 0.89 (4 0.02) 0.90 (4 0.02) 0.92 (4 0.03) 0.91 (+ 0.02)

Values are means over the 4 folds, with standard deviations between parenthesis

On the other hand, studying Fig.3 does not help with the
interpretation of FPs, as the pairwise MMSE distributions
are not very different from the long-term MMSE distribu-
tions for FPs. However, there are fewer FPs than FNs (on
average on the 4 folds, 10.5 v.s. 32), and this might be an
artifact due to the way we create our ground-truth (using auto-
matic clustering, without supervision from a medical doctor).
For example, if these patients have a punctual drop in their
MMSE score on their last visit, they will be considered in our
ground-truth as declining (Positive), even though this might
just be that they were not in a good shape on the day of their
last visit.

Influence of time interval

Following the findings from the above section, we decided
to have a closer look at the influence of the time interval
8 between two visits used by our model, on the model’s
prediction performance. For example, we expected the pairs
“baseline and 24 months” to be the best-classified pairs, given
that it corresponds to the longest possible interval in the train-
ing and validation datasets.

But, Table 2 shows that on average and contrary to what
we expected, increasing § does not improve the classification
results. Indeed, all pairwise T'-tests for different time inter-
vals give p-values between 0.084 and 0.35 (and preliminary
pairwise Fisher test p-values are all very high). This means
that our model is at least partly invariant with the time interval
between the two input visits.

In a medical longitudinal study, the independence of prog-
nosis performance to time intervals is an interesting and
useful characteristic of our model because it means that we
do not necessarily need a patient’s follow-up over a long time
span to predict its long-term evolution.

Fine-tuning results with PPMI data

For transfer learning from Alzheimer’s disease (ADNI
dataset) to Parkinson’s disease (PPMI dataset), we tried and
compared several initialization and re-training strategies:

e (1) Training the whole network from scratch (i.e. with
randomly initialized parameters)
e (2) Fine-tuning all the layers

Mean training curves for finetuning experiments

0.9
|

0.8
I

Val loss
0.7
1

0.6
1
<

0.5

0 5 10 15 20 25 30
Epochs

= (1) Scratch all
«=(2) Finetuning all
(3) Finetuning img and joint + scratch clin
——— (4) Freeze conv + finetuning img_fc and joint + scratch clin

Fig. 4 Evolution of the average value of the validation loss, over the
three folds used in cross-validation, computed during training, for our
four fine-tuning strategies

e (3) Fine-tuning the MRI and joint sub-modules and train-
ing the clinical sub-module from scratch

e (4) Freezing all convolution layers, fine-tuning the fully-
connected layers of the MRI and joint sub-modules and
training the clinical sub-module from scratch

These four models were trained with three-fold cross-
validation and the same fold distribution. Figure 4 shows the
evolution of the average validation loss over successive train-
ing epochs. The two following subsections are focusing on
the compared performances of our four strategies at train-
ing epochs number 5 and 30 respectively, to compare the
convergence speeds of our four strategies.

At epoch 5

Our experimental comparison of the 4 strategies above, once
the 5th training epoch has just been completed, is illustrated
in Table 3 and Fig.5.

At epoch 5, the model using strategy (1) (whole model
trained from scratch on PPMI) did not yet learn anything, as
the value of the validation loss never decreased.

The three remaining models (2)—(4) all have a low true
positives to false positives ratio, but strategy (4) seems to be
the most effective at an early stage of learning for Parkinson
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Table 3 Transfer learning results for our four re-training strategies,
after training for 5 epochs

Strategy Test accuracy Test F1 Test AUC

(1)* 0.63 (£ 0.0) 0.78 (£ 0.0) 0.72 (£ 0.13)
2) 0.68 (£ 0.08) 0.80 (£ 0.04) 0.71 (£ 0.13)
3) 0.80 (£ 0.06) 0.85 (£ 0.05) 0.82 (£ 0.10)
4 0.80 (£ 0.07) 0.86 (£ 0.04) 0.81 (£ 0.10)

Values are means over the cross validation folds, with standard devia-
tions between parenthesis. *for method (1), training didn’t work with
the 3rd fold

Mean ROC curves for finetuning experiments
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Fig.5 Mean of ROC curves for our four re-training strategies, at train-
ing epoch 5

Table 4 Transfer learning results for our four re-training strategies, at
epoch 30

Strategy Test accuracy Test F1 Test AUC

(1) 0.77 (£ 0.04) 0.84 (£ 0.02) 0.82 (£ 0.09)
2) 0.71 (£ 0.03) 0.76 (£ 0.06) 0.82 (£ 0.03)
3) 0.78 (£ 0.13) 0.85 (£ 0.06) 0.90 (£ 0.01)
“4) 0.83 (£ 0.04) 0.88 (£ 0.02) 0.87 (£ 0.05)

Values are means over the cross validation folds, with standard devia-
tions in parenthesis

subjects’ prediction of cognitive decline, as shown in the
ROC curves in Fig. 5.

At epoch 30

As expected, once the models have been trained for 30
epochs, most performance metrics for all models have
improved, except for the test accuracy of model (3) and the
F1 measure of model (2). The AUC measures, which in our
view are the most important ones, have all increased (see
Table 4 and Fig.6). The sub-par performance of model (2)
can be obviously explained by the fact that it used pre-trained
weights for the clinical part of the network, while the clinical
scores are not the same between ADNI and PPMI.

Models (3) and (4) are better than model (1) trained from
scratch on PPMI data. This shows that transfer learning
improves the prediction accuracy compared to “classical”
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Fig. 6 Mean of ROC curves for our four re-training strategies, after
training for 30 epochs

learning (from scratch), at least on a small target dataset such
as the PPMI subset considered here. We note that the differ-
ence between the performances of strategies (3) and (4) is
not statistically significant, as showed by a Kruskal-Wallis
test on the Fl-scores (p-value = 0.08798 > 0.05).

Discussion

Our experiments with the improved Multimodal3DSiamese
Net model on the ADNI data showed that its long-term pre-
diction accuracy for the cognitive decline does not vary much
with the time interval between the two input visits. This is
an important result, as it would normally be expected that a
longer interval leads to a better prediction. For example, in
[20], the authors conceived a model to evaluate the probabil-
ities of transition from healthy to mild cognitive impairment
to Alzheimer’s disease and found that the transition prob-
ability increased with the time interval between visits. In
comparison, thanks to our model’s architecture and our train-
ing dataset and protocol, we can use two early medical visits
to predict the long-term evolution of a patient, and these two
visits can be chosen randomly among the early visits avail-
able for each patient. Of course, this strategy will only work
if the subject shows signs of cognitive decline in the time
frame considered by our model.

However, we also found out that some of our model’s pre-
diction errors were probably caused by punctual variations in
the score (MMSE) used to label our classes of subjects (the
score from each subject’s last visit). This may mean that our
choice of ground truth (i.e. automatic generation using clus-
tering), even if it is quite commonly used in the community,
is not as accurate as it could be. Our work would certainly
benefit from an Alzheimer’s disease expert’s opinion on the
ground-truth that we use.

Finally, our transfer learning experiments on the small sub-
set of PPMI dataset on Parkinson’s disease showed a quicker
optimization and better classification performance when
transferring the knowledge from another neurodegenera-
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tive disease (here, Alzheimer’s), compared to training from
scratch.

We are mainly interested in strategies (3) and (4), which
are based on transfer learning on only the modalities which
are similar in the source and target datasets (here MRIs and
risk factors), with the difference that method (4) does not
fine-tune the convolutional layers (it freezes them). Among
these two strategies, we have shown that there is no significant
difference in their performances. In terms of computational
complexity, the most interesting one is model (4) with about 2
million parameters to learn, whereas model (3) has more than
35 million parameters to train. This is why we would recom-
mend using strategy (4), where we do not need to fine-tune the
convolutional layers (provided the two diseases considered
for the transfer have similar enough characteristics in terms
of imagery). In particular, we showed that we can use, for
Parkinson’s patients, the 3D filters learned from Alzheimer’s,
hence saving a great amount of computational effort. This
paves the way to the possibility of re-using, easily and with
very limited computational cost, our pre-trained model for
the long-term prediction of other neurodegenerative diseases
(beyond Parkinson’s), even for rare or under-studied diseases
where only a limited dataset is available.

Conclusion

In this work, we focused on predicting the cognitive decline
of patients affected by neurodegenerative diseases, based
on multimodal data (brain MRIs, clinical tests, and various
risk factors). The model that we propose to use, Multi-
modal3DSiameseNet, is able to process directly the 3D
MRI. We showed that this model gives a good prognosis for
Alzheimer’s disease progression in the long term (up to 72
months), even when using as inputs two early medical visits
picked randomly among the available early visits. Contrary
to what we initially expected, the time interval between the
two visits considered for a given subject does not seem to
affect greatly the accuracy of the prediction for that patient.

This is an interesting characteristic of our model and
experimental protocol, especially when dealing with neu-
rodegenerative diseases, where it is quite frequent that the
patients miss some control visits. However, we found out
that, in the future, we need to discuss our ground-truth with an
expert on Alzheimer’s disease, as it has been created automat-
ically and, in some cases, it might be biased by the punctual
mental state of the patients during their last visit. We are also
currently collaborating with an Alzheimer’s disease expert
so as to analyze more in-depth the differences in predictions
depending on the time interval between the two visits given
as input to the system.

We also showed the adaptability of our Multimodal3D
SiameseNet model to different diseases, with the example

of transfer learning from Alzheimer’s to Parkinson’s. Based
on the comparison of different transfer learning strategies,
we showed that, provided we have similar modalities in both
datasets, we can easily, and with limited computational com-
plexity, transfer the knowledge learned by our model from a
given neurodegenerative brain disease to another.

As Deep Learning can achieve impressive effectiveness,
but at the cost of big annotated datasets, this is a very inter-
esting feature of our model and protocol. In particular, our
adaptable multimodal model could be used for long-term pre-
diction of cognitive decline in a variety of neurodegenerative
diseases which are too rare or under-studied to have large
dedicated labelled datasets.

Beyond neurodegenerative diseases, in the future, we plan
to transfer our pre-trained model to other brain-related dis-
orders which involve a temporal evolution, including for
instance the detection of relapse risk after drug withdrawal.
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